Automated Goal-Oriented Error Control I: Stationary Variational Problems
نویسندگان
چکیده
This article presents a general and novel approach to the automation of goal-oriented error control in the solution of nonlinear stationary finite element variational problems. The approach is based on automated linearization to obtain the linearized dual problem, automated derivation and evaluation of a posteriori error estimates, and automated adaptive mesh refinement to control the error in a given goal functional to within a given tolerance. Numerical examples representing a variety of different discretizations of linear and nonlinear partial differential equations are presented, including Poisson’s equation, a mixed formulation of linear elasticity, and the incompressible Navier– Stokes equations.
منابع مشابه
Hartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کاملMesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state
An adaptive finite element method is developed for a class of optimal control problems with elliptic variational inequality constraints and objective functionals defined on the space of continuous functions, necessitated by a point-tracking requirement with respect to the state variable. A suitable first order stationarity concept is derived for the problem class via a penalty technique. The du...
متن کاملGoal-oriented Error Estimation for Free-boundary Problems Using the Exact Shape-linearized Adjoint
Since the late 1990s, goal-oriented error estimation and goal-oriented adaptive methods have been developed to control the discretization error in goal functionals of the solution1,2. These methods have mostly been applied to linear and nonlinear problems in solid and fluid mechanics. An important recent development is the extension of goal-oriented adaptive methods to multiphysics problems inv...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملPriority Programme 1962 A Goal-Oriented Dual-Weighted Adaptive Finite Element Approach for the Optimal Control of a Nonsmooth Cahn-Hilliard-Navier-Stokes System
This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a time-discrete Cahn–Hilliard–Navier–Stokes system with variable densities. The free energy density associated to the Cahn-Hilliard system incorporates the double-obstacle potential which yields an optimal control problem for a family of coupled systems in each time insta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013